Tree-Related Widths of Graphs and Hypergraphs

نویسنده

  • Isolde Adler
چکیده

A hypergraph pair is a pair (G,H) where G and H are hypergraphs on the same set of vertices. We extend the definitions of hypertree-width [7] and generalised hypertree-width [8] from hypergraphs to hypergraph pairs. We show that for constant k the problem of deciding whether a hypergraph pair has generalised hypertree-width ≤ k, is equivalent to the Hypergraph Sandwich Problem (HSP) [13]. It was recently proved in [9] that the HSP is NP-complete. For constant k there is a polynomial time algorithm that decides whether a given hypergraph pair has hypertree-width ≤ k. (For hypertree-width of hypergraphs, this was shown in [7].) It follows that the HSP is solvable in polynomial time for of inputs (G,H) satisfying: ghw(G,H) ≤ 1 if, and only if, hw(G,H) ≤ 1. Besides this practical interest, hypergraph pairs serve as a tool for giving a common proof for the game theoretic characterisations of tree-width [14] and hypertree-width [8]. Furthermore, they enable us to show a compactness property of generalised hypertree-width for a large class of hypergraphs, the hypergraphs with finite character. Finally, we present two examples showing that neither hypertree-width of hypergraph pairs nor hypertree-width of hypergraphs has the compactness property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CATEGORY OF (POM)L-FUZZY GRAPHS AND HYPERGRAPHS

In this note by considering a complete lattice L, we define thenotion of an L-Fuzzy hyperrelation on a given non-empty set X. Then wedefine the concepts of (POM)L-Fuzzy graph, hypergraph and subhypergroupand obtain some related results. In particular we construct the categories ofthe above mentioned notions, and give a (full and faithful) functor form thecategory of (POM)L-Fuzzy subhypergroups ...

متن کامل

Graph structure and Monadic second-order logic

Exclusion of minor, vertex-minor, induced subgraph Tree-structuring Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations. Mainly useful for tree-structured graphs (Second-order logic useless) Tools to be presented Algebraic setting for tree-structuring of graphs Recognizability = finite congruence ≡ inductive computability ≡ finite det...

متن کامل

Minor-matching hypertree width

In this paper we present a new width measure for a tree decomposition, minor-matching hypertree width, μ-tw, for graphs and hypergraphs, such that bounding the width guarantees that set of maximal independent sets has a polynomially-sized restriction to each decomposition bag. The relaxed conditions of the decomposition allow a much wider class of graphs and hypergraphs of bounded width compare...

متن کامل

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs

We investigate the relationship between two kinds of vertex colorings of hypergraphs: unique-maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every hyperedge of the hypergraph the maximum color in the hyperedge occurs in only one vertex of the hyperedge. In a conflict-free coloring, in every hyperedge of the hypergraph there exists a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008